
Security Assessment

DeFi Franc
CertiK Verified on Sept 25th, 2022

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

2 Major 2 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

5 Medium 5 Resolved
Medium risks may not pose a direct risk to users’

funds, but they can affect the overall functioning of a

platform.

12 Minor 9 Resolved, 1 Partially Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

5 Informational 4 Resolved, 1 Partially Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY DEFI FRANC

CertiK Verified on Sept 25th, 2022

DeFi Franc

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 09/25/2022

KEY COMPONENTS

N/A

CODEBASE
https://bitbucket.org/grizzlyfi/dchf-contracts/src/master/

...View All

COMMITS
409d3ea304cf130bff6f2f5d9a3ee4881972fe48

901c1b05372fbc17bc3474152e9a3916a119d96a

...View All

24
Total Findings

18
Resolved

2
Mitigated

2
Partially Resolved

2
Acknowledged

0
Declined

0
Unresolved

https://bitbucket.org/grizzlyfi/dchf-contracts/src/master/

TABLE OF CONTENTS DEFI FRANC

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

External Dependencies
Privileged Functions

Findings

GLOBAL-01 : Centralization Related Risks

GLOBAL-02 : Lack of Storage Gap

CIM-01 : Potential Incorrect Issuance in `issueMON()`

CKP-01 : Lack of check on `adminContract`

CKP-02 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

DPK-01 : Lack of input validation

ERP-01 : Susceptible to Signature Malleability

HHC-01 : Potential underflow revert in `getRedemptionHints()`

LMO-01 : Divide Before Multiply

MOC-01 : Potential Reentrancy Attack (Incrementing State)

MOC-02 : Check Effect Interaction Pattern Violated

MOT-01 : Initial token distribution

STC-01 : Incorrect input used

STC-02 : Lack of input validation

STD-01 : Incompatible with tokens with more than 18 decimals

TMC-01 : Uncallable function in `TroveManager`

TMH-01 : Incorrect modifier

TMH-02 : Uncallable functions in `TroveManagerHelpers`

TMH-03 : Lack of input validation

CKP-04 : Redundant Code Components

CKP-05 : Missing Error Messages

TABLE OF CONTENTS DEFI FRANC

CKP-06 : Missing Emit Events

CKP-07 : Missing Zero Address Validation

TMH-04 : Repetitive function implementation

Optimizations

GLOBAL-03 : Unnecessary Use of SafeMath and SafeMathUpgradeable

BOC-01 : Useless Statement

CKP-03 : Improper Usage of `public` and `external` Type

DMD-01 : Unnecessary write to memory

LMO-02 : Costly Operation Inside Loop

MOT-02 : State Variable Should Be Declared Constant

TMC-02 : Unnecessary external call

Appendix

Disclaimer

TABLE OF CONTENTS DEFI FRANC

CODEBASE DEFI FRANC

Repository

https://bitbucket.org/grizzlyfi/dchf-contracts/src/master/

Commit

409d3ea304cf130bff6f2f5d9a3ee4881972fe48

901c1b05372fbc17bc3474152e9a3916a119d96a

CODEBASE DEFI FRANC

https://bitbucket.org/grizzlyfi/dchf-contracts/src/master/

AUDIT SCOPE DEFI FRANC

46 files audited 2 files with Acknowledged findings 10 files with Partially Resolved findings

1 file with Mitigated findings 2 files with Resolved findings 31 files without findings

ID File SHA256 Checksum

ERP Dependencies/ERC20Permit.sol
52294eb37c593c2f8aac7a6d9f9b968f2fe96c0f7d5008500b0664ce72

9b2efa

HHC HintHelpers.sol
cdd5abedbf395703a98cffb121f409d497977b23c35b65f37f744cb336

b85d1c

CIM MON/CommunityIssuance.sol
f27be3533c0718d70dbdf4cf387b97860b3ab387f5abd4ff6aab0521fe

27e385

LMO MON/LockedMON.sol
31b1dd252ac3a73df0d0361aebaedbaaa4af0a1d053a818a794c789a

9f6b193b

MOS MON/MONStaking.sol
e83154ccd4f718fc3699fe7f7b35e0831da0e5eff311bf00f67d4427f66

3cf55

MOT MON/MONToken.sol
5eca88e804dc270c9f7a58d0acd4cce651a9e171961b7fe03857ffb36

458eed7

ACC AdminContract.sol
6327f21d4638095f60a1215e336cd6541c8b8df6e0b639d5b8ecc7c14

faa2869

BOC BorrowerOperations.sol
9dfc8e397151dd5723023b05750930226e2137583fb147757c8f1dcb

871d7294

CSP CollSurplusPool.sol
a648c30bb0258cc0a4c503381282cd5f48f665f1341783c21af8a4863

c731b0d

DCH DCHFToken.sol
844c309c305c02b3cf87a32af0ff8b4372f4a0f290e90c05198bbb7333

640ecd

DPK DfrancParameters.sol
c54b111347f4590aa10210f59ede1f873da0da457b5f6c8ac65d23a41

765a4cd

MCK Migrations.sol
6f5d4f27d32f59aaf2a1b2b0130022f151e925522c406152bd1cbb582

6d711fa

PFC PriceFeed.sol
5f12482b27994c13daf9909bcc34454f63dd65b727066b4ac1ea6f3c2

41716b0

DMD Dependencies/DfrancMath.sol
1abb322c263aeb9f815495b2628b030d04688e71db5dee62ee406cf1

0193b8ed

AUDIT SCOPE DEFI FRANC

ID File SHA256 Checksum

STD
Dependencies/SafetyTransfer.so

l

9d7b0d104ce49c2e923920463f3c043aaa28d6c5f9794ff661d9b0ae5

187ecd1

BMD Dependencies/BaseMath.sol
4421956cd5b4684bff063f63e9b01433f7d7d4f92d398f405ac380715d

a5d35a

CCD
Dependencies/CheckContract.s

ol

fb24cbcfaf9c19cf7b26e940986fdd0c6abf984c7152ce55e911640d2a

8310fb

DBD Dependencies/DfrancBase.sol
e99b1c0d59a7c2905fc8a45e71a5f48f30fbd5158fdf37a53f18f4ac2a5

6c150

DSM
Dependencies/DfrancSafeMath1

28.sol

d1bcf6981f794fb07c4dbec19d661fadb7d614942faa39b1c334b8f846

ea363f

ERC
Dependencies/ERC20Decimals.

sol

6061d0e907906f9bc0e7d801c2609f8d66ffc1bca5413c2fee8e1501b0

df1d1e

IER Dependencies/IERC2612.sol
d50c8ca19df49c1c487d5aba4513cbc9f849844eea51726c5db1c2f30

ff0fcda

ITD Dependencies/ITellor.sol
e868f248be4b7459fe85e2421411eeb416c58ca68153cfa0d9ed4735

a17e146a

TCD Dependencies/TellorCaller.sol
d65bfbdf958d1e0b688e50cd3ba88f314e9345f9ab3a08ab8edfc10e3

2a27e6d

IAP Interfaces/IActivePool.sol
ae72a271ce99f4dbd14cd61ce57f40af85e24398bacc82a5921407ff92

78f5ce

IBO
Interfaces/IBorrowerOperations.

sol

f3b37a3718c685dbb01c7db1d8e5367be93f169d6a55a412ad12bad8

7eedd932

ICS Interfaces/ICollSurplusPool.sol
30e5040f66bc3c166b1cfd8ab2646295aa8d95da1edb4278db56b2f1

725b4ab8

ICI
Interfaces/ICommunityIssuance.

sol

3045a4a188b4961ea58a1088cec8eaafdc5abc6e1f3dba73038d0ece

c6a784a3

IDC Interfaces/IDCHFToken.sol
8239d56a53e06446717d0ba50a4bfb20065320bda3441051c73d4f06

1a65346c

IDP Interfaces/IDefaultPool.sol
39f533af5c3dfeb37662852e24daf16d35a1dbb83ba2675392aa44d40

42f1734

IDI Interfaces/IDeposit.sol
d687f9d7a4a5a84b2eade4e00baa78a382ace8547ff38ae27a634210f

503d463

AUDIT SCOPE DEFI FRANC

ID File SHA256 Checksum

IDB Interfaces/IDfrancBase.sol
6f9f332c0e018fb42db6187a4224b673da984d9dad9a4e084b677194f

5ebf9ae

IDK
Interfaces/IDfrancParameters.so

l

8f8f07ccab997e841ee225aafabb3e57a17313ffc6bdfee07daa49d1e9

31e1f1

IEC Interfaces/IERC20Deposit.sol
85ef7973bc8566876a7c81e81203b0405fd82c88e27d2a1124aae8c6

4d524d88

IMO Interfaces/IMONStaking.sol
933260dc60f8099774dfc562819cfa5b6c16ed5b5d3b21a8df5da96cb

b731e32

IPI Interfaces/IPool.sol
f7373cd15ac184b3d47968e04cda7ed575627c237fdd601412fd1803

58b09670

IPF Interfaces/IPriceFeed.sol
ca49db882883354e02ab9939dd5c8633047e3c701014b6c0744b921

1383a245f

IST Interfaces/ISortedTroves.sol
b2ff32b9b72a9b16c33f58f85c4d1ebd5c234f716f6e9545eddd7d0ecb

dad445

ISP Interfaces/IStabilityPool.sol
f36d41b17b3f2198bbbba14520adba4f86ecb398375146e5580e235b

4a738200

ISM
Interfaces/IStabilityPoolManage

r.sol

cbb77ad06363237bc366ffedba6237b810f2ab07134c63869566de15

345fc490

ITC Interfaces/ITellorCaller.sol
58744f4e70b38d0f58a3a78f5f246254c88ed433c4bd4c6e29a412039

5f16875

ITM Interfaces/ITroveManager.sol
92c7eb950740c85ab9b58019c45b685370e46c9dc9c8f1338a6abda4

143ac688

ITH
Interfaces/ITroveManagerHelper

s.sol

b7de30ebe4a4bd08a7c1427507274de5c14b5b3f045d75bb892cc48

08ea333b2

APC ActivePool.sol
6d32a95841a6345cae21d99c3b8f1b7c194c9d0451b7db789e53ce2a

953d5e55

DPC DefaultPool.sol
3aca1b24191cf54b277fd8fbed803c5eb5b5d9348ca8775df74ccd022

e3c8615

GPC GasPool.sol
d9496c8d3054b7f85f36d455e4539f719d43a41cf4b8687cf234943d0

4a1098f

MTG MultiTroveGetter.sol
a3b52c6ddf33e91eb74ec9e00d828f011e95f12eda525e9a94e0adbb

ef5cf56f

AUDIT SCOPE DEFI FRANC

APPROACH & METHODS DEFI FRANC

This report has been prepared for DeFi Franc to discover issues and vulnerabilities in the source code of the DeFi Franc

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from major to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest the follwoing recommendations that

could better serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS DEFI FRANC

REVIEW NOTES DEFI FRANC

Overview

DeFi Franc is a liquidity mining aggregator that aggregates liquidity mining opportunities throughout the ecosystem.

The smart contracts in the scope of the audit were forked from Liquity and Vesta Finance, which are protocols for

collateralized liquidity mining. It allows users to use the native token as collateral in order to borrow the CHF stablecoin

DCHF, with zero percent interest. Furthermore, users can stake their stablecoin to earn the reward token Moneta or use the

stablecoin to redeem the native token at face value, regardless of the price of the stablecoin.

External Dependencies

The scope of the audit treats third-party entities as black boxes and assumes their functional correctness. However, in the

real world, third parties can be compromised and this may lead to lost or stolen assets.

There are a few dependent injection contracts or addresses in the current project:

Chainlink oracle;

Collateral assets.

Privileged Functions

In the DeFi Franc project, multiple privileged roles are adopted to ensure the dynamic runtime updates of the project,

which were specified in the finding GLOBAL-01 | Centralization Related Risks.

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community. It is also worth noting the potential drawbacks of these functions, which

should be clearly stated through the client's action/plan. Additionally, if the private keys of the privileged accounts are

compromised, it could lead to a devastating consequence to the project.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.

Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of the

Timelock contract.

REVIEW NOTES DEFI FRANC

FINDINGS DEFI FRANC

This report has been prepared to discover issues and vulnerabilities for DeFi Franc. Through this audit, we have uncovered

24 issues ranging from different severity levels. Utilizing Static Analysis techniques to complement rigorous manual code

reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-01 Centralization Related Risks
Centralization /

Privilege
Major Mitigated

GLOBAL-02 Lack Of Storage Gap Language Specific Medium Resolved

CIM-01
Potential Incorrect Issuance In

issueMON()
Logical Issue Minor Resolved

CKP-01 Lack Of Check On adminContract Inconsistency Minor Resolved

CKP-02
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Resolved

DPK-01 Lack Of Input Validation Volatile Code Minor Partially Resolved

ERP-01 Susceptible To Signature Malleability Volatile Code Minor Acknowledged

HHC-01
Potential Underflow Revert In

getRedemptionHints()
Logical Issue Minor Acknowledged

LMO-01 Divide Before Multiply
Mathematical

Operations
Minor Resolved

MOC-01
Potential Reentrancy Attack

(Incrementing State)
Volatile Code Minor Resolved

FINDINGS DEFI FRANC

24
Total Findings

0
Critical

2
Major

5
Medium

12
Minor

5
Informational

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663225101919
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663228816756
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663903461083
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663140014937
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318063
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663908117711
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663970190394
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663901410840
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318062
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318066

ID Title Category Severity Status

MOC-02
Check Effect Interaction Pattern

Violated
Volatile Code Minor Resolved

MOT-01 Initial Token Distribution
Centralization /

Privilege
Major Mitigated

STC-01 Incorrect Input Used Volatile Code Medium Resolved

STC-02 Lack Of Input Validation Inconsistency Minor Resolved

STD-01
Incompatible With Tokens With More

Than 18 Decimals
Control Flow Minor Resolved

TMC-01
Uncallable Function In

TroveManager
Volatile Code Medium Resolved

TMH-01 Incorrect Modifier Inconsistency Medium Resolved

TMH-02
Uncallable Functions In

TroveManagerHelpers
Volatile Code Medium Resolved

TMH-03 Lack Of Input Validation Inconsistency Minor Resolved

CKP-04 Redundant Code Components Volatile Code Informational Resolved

CKP-05 Missing Error Messages Coding Style Informational Resolved

CKP-06 Missing Emit Events Coding Style Informational Partially Resolved

CKP-07 Missing Zero Address Validation Volatile Code Informational Resolved

TMH-04 Repetitive Function Implementation Coding Style Informational Resolved

FINDINGS DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318067
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663320757975
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663171968716
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663231057457
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1662530793203
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663900933050
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663146689566
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663724441624
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663142202493
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238289
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238290
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238291
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318045
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663143060230

GLOBAL-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization / Privilege Major Mitigated

Description

In the contract AdminContract , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and add his own custom

tokens as collateral.

GLOBAL-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663225101919

Function

State Variables

Function Calls

Authenticated Role

Function

Function Calls

Function Calls

Function Calls

Function Calls

setAddresses

sortedTrovesAddress

troveManagerAddress

stabilityPoolManager

borrowerOperationsAddress

dchfTokenAddress

dfrancParameters

troveManagerHelpersAddress

isInitialized

communityIssuance

IStabilityPoolManager

CheckContract

ICommunityIssuance

IDfrancParameters

_owner

addNewCollateral

IStabilityPool

In the contract DCHFToken , the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and stop the minting of DCHF .

Authenticated Role Function

_owner emergencyStopMinting

GLOBAL-01 DEFI FRANC

In the contract DfrancBase , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and modify the address for

protocol parameters.

Function

State Variables

Authenticated Role
Function Calls

setDfrancParameters

vestaParams

IDfrancParameters
_owner

In the contract DfrancParameters , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and modify the admin contract

or change protocol parameters.

GLOBAL-01 DEFI FRANC

Authenticated Role

Function

Function

Function

Function State Variables

Function CallsFunction

Function

Function Calls

Function Calls

Function Calls

Function Calls

Function

Function Calls

Function Calls

Function Calls

_owner

setMCR

setMaxBorrowingFee

setAsDefault

setPriceFeed

removeRedemptionBlock

setCollateralParameters

setBorrowingFeeFloor

setPercentDivisor

setCCR

setRedemptionFeeFloor

setMinNetDebt

setDCHFGasCompensation

_setAsDefault

priceFeed

checkContract

GLOBAL-01 DEFI FRANC

Function

State VariablessetAdminContract

IPriceFeed

adminContract

In the contract DfrancParameters , the role adminContract has authority over the functions shown in the diagram below.

Any compromise to the adminContract account may allow the hacker to take advantage of this authority and configure

some state variables for an asset.

Authenticated Role Function Function Calls

adminContract setAsDefaultWithRemptionBlock _setAsDefault

In the contract CommunityIssuance , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and modify the admin contract.

Authenticated Role

Function

Function Calls

Function

Function State Variables

_owner

removeFundFromStabilityPool

transferFundToAnotherStabilityPool

setAdminContract

disableStabilityPool

adminContract

In the contract CommunityIssuance , the role adminContract has authority over the functions shown in the diagram below.

Any compromise to the adminContract account may allow the hacker to take advantage of this authority and modify the

weekly distribution of tokens.

Authenticated Role

Function

Function

Function Calls

Function

adminContract

addFundToStabilityPoolFrom

addFundToStabilityPool

setWeeklyVstaDistribution

_addFundToStabilityPoolFrom

GLOBAL-01 DEFI FRANC

In the contract LockedMON , the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and remove an entity from the

entitiesVesting array.

Function

State Variables

Function Calls

Authenticated Role

Function

State Variables

Function Calls

Function Function Calls

Function State Variables

Function Function Calls

Function CallssetAddresses

isInitialized

monToken

checkContract

IERC20

_owner

addEntityVesting

lowerEntityVesting

removeEntityVesting

transferUnassignedMON

assignedMONTokens

Rule

sendMONTokenToEntity

assignedMONTokens

getUnassignMONTokensAmount

In the contract MONStaking , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and pause the contract.

GLOBAL-01 DEFI FRANC

Function Function Calls

Authenticated Role Function State Variables

Function Function Calls

pause _pause

_owner changeTreasuryAddress

unpause

treasury

_unpause

In the contract PriceFeed , the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and modify the admin contract.

Function State VariablesAuthenticated Role

setAdminContract adminContract_owner

In the contract PriceFeed , the role adminContract has authority over the functions shown in the diagram below. Any

compromise to the adminContract account may allow the hacker to take advantage of this authority and add Chainlink

oracles.

GLOBAL-01 DEFI FRANC

Function

Function Calls

Function Calls

Function Calls

Function CallsAuthenticated Role

Function Calls

Function Calls

Function Calls

addOracle

_chainlinkIsBroken

_chainlinkIsFrozen

_storeChainlinkPrice

_getChainlinkResponses

RegisterOracle

_storeChainlinkIndex

AggregatorV3Interface

adminContract

In the contract StabilityPoolManager , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and modify the admin contract.

Authenticated Role Function State Variables

_owner setAdminContract adminContract

GLOBAL-01 DEFI FRANC

In the contract StabilityPoolManager , the role adminContract has authority over the functions shown in the diagram

below. Any compromise to the adminContract account may allow the hacker to take advantage of this authority and add or

remove stability pools.

Function

Function Calls

Function Calls

Authenticated Role
Function

addStabilityPool

CheckContract

IStabilityPool

adminContract
removeStabilityPool

In the contract TroveManager , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and add or remove users from

the WhitelistRedemption array.

Function State Variables

Authenticated Role Function

Function

setRedemptionWhitelistStatus isRedemptionWhitelisted

_owner addUserToWhitelistRedemption

removeUserFromWhitelistRedemption

In addition, the contracts

ActivePool ,

AdminContract ,

BorrowerOperations ,

CollSurplusPool ,

DefaultPool ,

DfrancBase ,

DfrancParameters ,

HintHelpers ,

GLOBAL-01 DEFI FRANC

PriceFeed ,

SortedTroves ,

StabilityPool ,

StabilityPoolManager ,

TroveManager ,

TroveManagerHelpers ,

CommunityIssuance ,

LockedMON ,

MONStaking ,

PriceFeed ,

SortedTroves ,

StabilityPoolManager

are upgradeable contracts, meaning the owner can upgrade the contract without the community's consensus. If an attacker

compromises the account, they can change the implementation of the contract and drain tokens from the contract.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of

short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

GLOBAL-01 DEFI FRANC

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

Noted: Recommend considering the long-term solution or the permanent solution. The project team shall make a decision

based on the current state of their project, timeline, and project resources.

Alleviation

[DeFi Franc] :

The team has implemented the following short term solution:

1. Multi-sign proxy address:

https://etherscan.io/address/0x83737eae72ba7597b36494d723fbf58cafee8a69

2. Transaction proof for transferring ownership to multi-signature proxy:

https://etherscan.io/tx/0xea7d8303eb36885d2446bd3ea73ca64027f5e851c5ba0119fddd0370b3604468

3. Internal multi-signature address:

https://etherscan.io/address/0x8c013078c75e790Ffed8E11342EcfF53c5cd73A8,

https://etherscan.io/address/0x7AFF0f97357a7e8b577298f2fe81E6330975e28d,

https://etherscan.io/address/0x67733CFa01B42900057759a8EBA97AFED02C44E8

GLOBAL-01 DEFI FRANC

https://etherscan.io/address/0x83737eae72ba7597b36494d723fbf58cafee8a69
https://etherscan.io/tx/0xea7d8303eb36885d2446bd3ea73ca64027f5e851c5ba0119fddd0370b3604468
https://etherscan.io/address/0x8c013078c75e790Ffed8E11342EcfF53c5cd73A8
https://etherscan.io/address/0x7AFF0f97357a7e8b577298f2fe81E6330975e28d
https://etherscan.io/address/0x67733CFa01B42900057759a8EBA97AFED02C44E8

GLOBAL-02 LACK OF STORAGE GAP

Category Severity Location Status

Language Specific Medium Resolved

Description

ActivePool , AdminContract , BorrowerOperations , CollSurplusPool , DefaultPool , DfrancBase ,

DfrancParameters , HintHelpers , PriceFeed , SortedTroves , StabilityPool , StabilityPoolManager ,

TroveManager , TroveManagerHelpers , CommunityIssuance , LockedMON , MONStaking , PriceFeed , SortedTroves ,

StabilityPoolManager are upgradeable contracts.

For upgradeable contracts, there must be a storage gap to "allow developers to freely add new state variables in the future

without compromising the storage compatibility with existing deployments". Otherwise, it may be very difficult to write new

implementation code. Without a storage gap, the variable in a child contract might be overwritten by the upgraded base

contract if new variables are added to the base contract.

Refer to https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

Recommendation

It is recommended to add an appropriate storage gap at the end of each upgradeable contract.

Alleviation

[DeFi Franc] :

The team resolved the finding in commit d6f731b32d6b04aa65f987c330e2cdb108f28c54 by modifying the design and opting

for non-upgradeable contracts.

GLOBAL-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663228816756
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/d6f731b32d6b04aa65f987c330e2cdb108f28c54

CIM-01 POTENTIAL INCORRECT ISSUANCE IN issueMON()

Category Severity Location Status

Logical Issue Minor MON/CommunityIssuance.sol: 173~195 Resolved

Description

The function issueMON() is called by the StabilityPool and returns the new MON issuance of the pool. The value of the

new issuance is the multiplication of the number of minutes from the lastUpdateTime[pool] to the block.timestamp ,

and the monDistributionsByPool[stabilityPool] .

The variable lastUpdateTime[pool] will update to block.timestamp in every call, unless the total issuance has met the

cap.

Due to the division truncation in solidity, the timePassed will be 0 if the interval is less than one minute and the issuance

will also be 0.

 uint256 timePassed = block.timestamp.sub(lastUpdateTime[stabilityPool]).div(

 SECONDS_IN_ONE_MINUTE

);

 uint256 totalDistribuedSinceBeginning =

monDistributionsByPool[stabilityPool].mul(

 timePassed

);

As a result, in the case of multiple calls where the interval between each call is less than one minute, the issuance

returned is always 0 and the total issuance will not match the actual value.

Recommendation

The auditing team recommends updating lastUpdateTime[_pool] in terms of minutes instead of seconds.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved the finding in the commit hash f14dc00a17d3ec14e493648913c23533732934f0.

CIM-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663903461083
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/f14dc00a17d3ec14e493648913c23533732934f0

CKP-01 LACK OF CHECK ON adminContract

Category Severity Location Status

Inconsistency Minor
DfrancParameters.sol: 76~79; MON/CommunityIssuance.sol: 83~86; P

riceFeed.sol: 50~53; StabilityPoolManager.sol: 32~35
Resolved

Description

In the aforementioned contracts, upon initialization (setAddresses()), adminContract is checked to ensure that the

address corresponds to a contract.

This verification is performed with the checkContract() function.

However, the owner can later change the address for an EOA, because the checkContract() verification is missing in the

setAdminContract() function.

22 function setAddresses(address _adminContract) external initializer {

23 require(!isInitialized, "Already initialized");

24 checkContract(_adminContract);

25 isInitialized = true;

26

27 __Ownable_init();

28

29 adminContract = _adminContract;

30 }

31

32 function setAdminContract(address _admin) external onlyOwner {

33 require(_admin != address(0), "Admin cannot be empty address");

34 adminContract = _admin;

35 }

Recommendation

It is recommended to add the checkContract() verification inside the setAdminContract() function.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved the finding in the commit hash ae33c3a00044a91e8a8732d83639d27852fa8132.

CKP-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663140014937
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/ae33c3a00044a91e8a8732d83639d27852fa8132

CKP-02 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile

Code
Minor

MON/CommunityIssuance.sol: 225; MON/MONStaking.sol: 118, 138, 161,

182; Proxy/TokenScript.sol: 19, 35
Resolved

Description

The return value of the transfer()/transferFrom() call is not checked.

225 monToken.transfer(_account, safeAmount);

118 dchfToken.transfer(msg.sender, DCHFGain);

138 monToken.transferFrom(msg.sender, address(this), _MONamount);

161 dchfToken.transfer(msg.sender, DCHFGain);

182 monToken.transfer(msg.sender, MONToWithdraw);

19 token.transfer(recipient, amount);

35 token.transferFrom(sender, recipient, amount);

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We advise

using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and transferFrom()

functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a return value and

reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved the finding in commit f6af9db8addb65a8dc181b6241970242d8cc21f5.

CKP-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318063
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/f6af9db8addb65a8dc181b6241970242d8cc21f5

DPK-01 LACK OF INPUT VALIDATION

Category Severity Location Status

Volatile Code Minor DfrancParameters.sol: 149~150 Partially Resolved

Description

The following functions lack input validation and could intentionally or unintentionally break the protocol.

The functions setMCR() and setCCR() can change CCR and MCR, which could result in CCR < MCR.

The functions setBorrowingFeeFloor() and setMaxBorrowingFee() can change MAX_BORROWING_FEE and

BORROWING_FEE_FLOOR , which could result in MAX_BORROWING_FEE < BORROWING_FEE_FLOOR .

The function setDCHFGasCompensation() can increase DCHF_GAS_COMPENSATION which could result in not having

enough DCHF tokens to burn from the gas pool, preventing liquidations and redemptions.

Recommendation

Consider adding input verification such as require statements to check if the new value is consistent with the system

protocol and does not cause an error for operations on existing troves. The following are some possible solutions.

For the functions setMCR() and setCCR() , include require(MCR[_asset] < CCR[_asset]) after the new value

is set.

For the functions setBorrowingFeeFloor() and setMaxBorrowingFee() , include

require(MAX_BORROWING_FEE[_asset] > BORROWING_FEE_FLOOR[_asset])

For the function setDCHFGasCompensation() , mint or burn to the gas pool whenever DCHF_GAS_COMPENSATION is

changed to ensure enough tokens are available in the gas pool.

Alleviation

[DeFi Franc]

The team heeded the advice and partially resolved the finding in the commit hash

3df6e56e38aa045c9abdad48a796b916b6f76edd by adding checks on the borrowing fee and only allowing the first change

of the gas compensation to be a decrease. However, it is still possible for the MCR of an asset to be above the CCR.

DPK-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663908117711
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/3df6e56e38aa045c9abdad48a796b916b6f76edd

ERP-01 SUSCEPTIBLE TO SIGNATURE MALLEABILITY

Category Severity Location Status

Volatile Code Minor Dependencies/ERC20Permit.sol: 99 Acknowledged

Description

The signature malleability is possible within the Elliptic Curve cryptographic system. An Elliptic Curve is symmetric on the X-

axis, meaning two points can exist with the same X value. In the r , s and v representation this permits us to carefully

adjust s to produce a second valid signature for the same r , thus breaking the assumption that a signature cannot be

replayed in what is known as a replay-attack.

Recommendation

We advise to utilize a recover() function similar to that of the ECDSA.sol implementation of OpenZeppelin.

Alleviation

[DeFi Franc] :

The team acknowledged the advice and will not change the current codebase.

ERP-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663970190394
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.4.0/contracts/cryptography/ECDSA.sol#L53-L71

HHC-01 POTENTIAL UNDERFLOW REVERT IN
getRedemptionHints()

Category Severity Location Status

Logical Issue Minor HintHelpers.sol: 118 Acknowledged

Description

According to the following code, the variable _maxIterations is used as an iteration condition for the while loop and is self-

subtracting after each iteration.

 if (_maxIterations == 0) {

 _maxIterations = type(uint256).max;

 }

 while (currentTroveuser != address(0) && remainingDCHF > 0 &&

_maxIterations-- > 0) {

 ...

 }

If in the loop, the variable _maxIterations reaches 1 and the loop has not stopped, the variable _maxIterations (1) will

be compared to 0 and subtracted. In the next iteration, the _maxIterations is 0 and the iteration is false. However, the

operation -- will be done and it will trigger an underflow revert, since the compiler version is ^0.8.14 .

Recommendation

The auditing team recommends placing the -- operation within the while loop.

Alleviation

[DeFi Franc]

The team acknowledged the finding and decided to keep the codebase unchanged.

HHC-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663901410840

LMO-01 DIVIDE BEFORE MULTIPLY

Category Severity Location Status

Mathematical Operations Minor MON/LockedMON.sol: 157~161 Resolved

Description

Performing integer division before multiplication truncates the lower bits, losing the precision of calculation.

157 claimable = entityRule

158 .totalSupply

159 .div(ONE_YEAR)

160 .mul(block.timestamp.sub(entityRule.createdDate))

161 .sub(entityRule.claimed);

Recommendation

Apply multiplication before division to avoid loss of precision.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved the finding in the commit hash 9eff3050bd1021fd1896d66e6d6fe43931628557.

LMO-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318062
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/9eff3050bd1021fd1896d66e6d6fe43931628557

MOC-01 POTENTIAL REENTRANCY ATTACK (INCREMENTING
STATE)

Category Severity Location Status

Volatile

Code
Minor

MON/LockedMON.sol: 103, 104, 111, 137; MON/MONStaking.sol: 245, 2

46, 304, 307
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is considered minor because the state variable is only incremented or decremented. So, the effect of out-of-order

increments may be unobservable after transaction. However, the reentrancy vulnerability may still cause other issues in the

middle of transaction.

External call(s)

103 sendMONTokenToEntity(_entity);

This function call executes the following external call(s).

In SafeERC20._callOptionalReturn ,

returndata = address(token).functionCall(data,SafeERC20: low-level call failed)

In Address.functionCallWithValue ,

(success,returndata) = target.call{value: value}(data)

In LockedMON.sendMONTokenToEntity ,

monToken.safeTransfer(_entity,unclaimedAmount)

State variables written after the call(s)

104 Rule storage vestingRule = entitiesVesting[_entity];

111 vestingRule.totalSupply = newTotalSupply;

MOC-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318066

External call(s)

245 _sendAsset(treasury, _asset, _amount);

This function call executes the following external call(s).

In SafeERC20Upgradeable._callOptionalReturn ,

returndata = address(token).functionCall(data,SafeERC20: low-level call failed)

In MONStaking._sendAsset ,

(success) = _sendTo.call{value: _amount}()

In AddressUpgradeable.functionCallWithValue ,

(success,returndata) = target.call{value: value}(data)

In MONStaking._sendAsset ,

IERC20Upgradeable(_asset).safeTransfer(_sendTo,_amount)

State variables written after the call(s)

246 sentToTreasuryTracker[_asset] += _amount;

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by adding the nonReentrant modifier, in the commit

e3492f4df18d711fd8962cbeefdf4371f645ec92.

MOC-01 DEFI FRANC

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/e3492f4df18d711fd8962cbeefdf4371f645ec92

MOC-02 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category Severity Location Status

Volatile

Code
Minor

MON/LockedMON.sol: 115, 118~120, 122, 137; MON/MONStaking.sol: 118

, 123, 127, 161, 165, 287, 288, 304, 307
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

External call(s)

115 sendMONTokenToEntity(_entity);

This function call executes the following external call(s).

In SafeERC20._callOptionalReturn ,

returndata = address(token).functionCall(data,SafeERC20: low-level call failed)

In Address.functionCallWithValue ,

(success,returndata) = target.call{value: value}(data)

In LockedMON.sendMONTokenToEntity ,

monToken.safeTransfer(_entity,unclaimedAmount)

State variables written after the call(s)

118 assignedMONTokens = assignedMONTokens.sub(

119 vestingRule.totalSupply.sub(vestingRule.claimed)

120);

122 delete entitiesVesting[_entity];

External call(s)

MOC-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318067

118 dchfToken.transfer(msg.sender, DCHFGain);

123 _sendAssetGainToUser(asset, AssetGain);

This function call executes the following external call(s).

In SafeERC20Upgradeable._callOptionalReturn ,

returndata = address(token).functionCall(data,SafeERC20: low-level call failed)

In MONStaking._sendAsset ,

(success) = _sendTo.call{value: _amount}()

In AddressUpgradeable.functionCallWithValue ,

(success,returndata) = target.call{value: value}(data)

In MONStaking._sendAsset ,

IERC20Upgradeable(_asset).safeTransfer(_sendTo,_amount)

State variables written after the call(s)

127 _updateUserSnapshots(asset, msg.sender);

This function call executes the following assignment(s).

In MONStaking._updateUserSnapshots ,

snapshots[_user].F_ASSET_Snapshot[_asset] = F_ASSETS[_asset]

In MONStaking._updateUserSnapshots ,

snapshots[_user].F_DCHF_Snapshot = F_DCHF

External call(s)

161 dchfToken.transfer(msg.sender, DCHFGain);

State variables written after the call(s)

165 _updateUserSnapshots(asset, msg.sender);

MOC-02 DEFI FRANC

This function call executes the following assignment(s).

In MONStaking._updateUserSnapshots ,

snapshots[_user].F_ASSET_Snapshot[_asset] = F_ASSETS[_asset]

In MONStaking._updateUserSnapshots ,

snapshots[_user].F_DCHF_Snapshot = F_DCHF

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by adding the nonReentrant modifier, in the commit

e3492f4df18d711fd8962cbeefdf4371f645ec92.

MOC-02 DEFI FRANC

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/e3492f4df18d711fd8962cbeefdf4371f645ec92

MOT-01 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization / Privilege Major MON/MONToken.sol: 20~22 Mitigated

Description

All of the MON tokens are sent to the _treasurySig address when deploying the contract. This could be a centralization

risk as this address can distribute MON tokens without obtaining the consensus of the community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team shall make enough

efforts to restrict the access of the private key.

Alleviation

[DeFi Franc] :

The team published a Tokenomics document describing how the MON tokens will be distributed.

MOT-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663320757975
https://docs.defifranc.com/tokenomics/moneta-tokenomics

STC-01 INCORRECT INPUT USED

Category Severity Location Status

Volatile Code Medium SortedTroves.sol: 96~97 Resolved

Description

The troveManagerHelpers is an interface variable for the interface ITroveManagerHelpers . The interface is using

_troveManagerAddress instead of _troveManagerHelpersAddress .

96 troveManagerHelpers = ITroveManagerHelpers(_troveManagerAddress);

Any function that calls or checks using troveManagerHelpers will most likely result in a failure.

Recommendation

Change _troveManagerAddress to _troveManagerHelpersAddress .

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by changing the input, in the commit

ca4d9ec85e38429fa484d6bb40dc7ffc9770256a.

STC-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663171968716
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/ca4d9ec85e38429fa484d6bb40dc7ffc9770256a

STC-02 LACK OF INPUT VALIDATION

Category Severity Location Status

Inconsistency Minor SortedTroves.sol: 83~84 Resolved

Description

The input parameter _troveManagerHelpersAddress is missing input validation. Despite _troveManagerAddress and

_borrowerOperationsAddress being checked if they are contracts via the function checkContract , this check is not

performed on _troveManagerHelpersAddress . Lack of input validation can result in assigning an incorrect address or zero

address.

Recommendation

Consider adding checkContract(_troveManagerHelpersAddress) to check if _troveManagerHelpersAddress is not the

zero address and also a contract.

Alleviation

[DeFi Franc]

The team heeded the advice and resolved the finding in the commit hash 616f2a84a7a7a7bfdd2f042b84ffbd147dd1067b.

STC-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663231057457
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/616f2a84a7a7a7bfdd2f042b84ffbd147dd1067b

STD-01 INCOMPATIBLE WITH TOKENS WITH MORE THAN 18
DECIMALS

Category Severity Location Status

Control Flow Minor Dependencies/SafetyTransfer.sol: 8~9 Resolved

Description

Although uncommon, there are tokens that have more than 18 decimals such as the YAMv2 token, which has 24 decimals.

The current implementation does not have any control flow that takes decimals greater than 18 into consideration.

Recommendation

Carefully check the decimal of assets added to the protocol in the future, or include the following code to handle assets that

have more than 18 decimals:

19 } else {

20 return _amount.mul(10**(decimals - 18))

21 }

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved the finding in the commit 65fd7d4fb22638ff87db63cfaccb45fb18e293e6.

STD-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1662530793203
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/65fd7d4fb22638ff87db63cfaccb45fb18e293e6

TMC-01 UNCALLABLE FUNCTION IN TroveManager

Category Severity Location Status

Volatile Code Medium TroveManager.sol: 980~981 Resolved

Description

Line 980 makes an external call to the function troveManagerHelpers.updateStakeAndTotalStakes() . However, it is

uncallable since the modifier for updateStakeAndTotalStakes() is onlyBorrowerOperations which limits the caller to the

BorrowerOperations contract and does not include the TroveManager contract.

Recommendation

Change the modifier onlyBorrowerOperations to onlyBOorTM . If the suggested change is made, also consider removing

the function updateStakeAndTotalStakesTrove in TroveManagerHelpers contract since the functionality will overlap with

updateStakeAndTotalStakes .

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by changing the modifier in the commit

a38c2c749fe3925a0e1c218c8bed22a3ebb3f041.

TMC-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663900933050
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/a38c2c749fe3925a0e1c218c8bed22a3ebb3f041

TMH-01 INCORRECT MODIFIER

Category Severity Location Status

Inconsistency Medium TroveManagerHelpers.sol: 896~897 Resolved

Description

The comment on line 888 states : Trove property setters, called by TroveManager . This comment suggests that the

function that follows will be called by the contract TroveManager .

888 // --- Trove property setters, called by TroveManager ---

889

890 // todo: only Trovemanager

891 function setTroveDeptAndColl(

892 address _asset,

893 address _borrower,

894 uint256 _debt,

895 uint256 _coll

896) external override onlyBorrowerOperations {

However, the function that follows is setTroveDeptAndColl() and has the modifier onlyBorrowerOperations .

Furthermore, the contract BorrowerOperations does not contain any calls to the function setTroveDeptAndColl() .

Instead, the contract TroveManager calls the function setTroveDeptAndColl() .

If borrowerOperationsAddress is properly set to the contract BorrowerOperations , this function will not be callable and

subsequently, the redemption of collateral will not be possible since the function redeemCollateral() in the contract

TroveManager calls this function.

Recommendation

Change the modifier from _onlyBorrowerOperations to onlyTroveManager .

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by changing the modifier, in the commit

4903708fcf4e59eaa82c191728ca2d1d8bacdb44.

TMH-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663146689566
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/4903708fcf4e59eaa82c191728ca2d1d8bacdb44

TMH-02 UNCALLABLE FUNCTIONS IN TroveManagerHelpers

Category Severity Location Status

Volatile Code Medium TroveManagerHelpers.sol: 471~472, 473~474, 971~972 Resolved

Description

The following lines of code in the contract TroveManagerHelpers are uncallable due to the modifier of the external callee

function.

Line 471 is assumed to make an external call to the function decreaseDCHFDebt() of the ActivePool contract.

However the function decreaseDCHFDebt() has a modifier callerIsBOorTroveMorSP which requires the caller to

be BorrowerOperations , TroveManager , or StabilityPool contract.

Line 473 is assumed to make an external call to the function sendAsset of the ActivePool contract. However the

function sendAsset has a modifier callerIsBOorTroveMorSP which requires the caller to be

BorrowerOperations , TroveManager , or StabilityPool contract.

Line 971 is assumed to make an external call to the function increaseDCHFDebt of the ActivePool contract.

However the function increaseDCHFDebt has a modifier callerIsBOorTroveM which requires the caller to be

BorrowerOperations or TroveManager contract.

Since TroveManagerHelpers is not included in any of the modifiers of the callee function, it prevents the

TroveManagerHelpers contract from calling these functions.

Recommendation

Check if the call to the external functions are correct and if it is, include the TroveManagerHelpers in the modifier

callerIsBOorTroveMorSP and callerIsBOorTroveM of the ActivePool contract, to allow calls to the function from the

TroveManagerHelpers contract.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by adding troveManagerHelpersAddress in the

callerIsBOorTroveMorSP modifier, in the commit cc00b0ecb22f7b435bbef88f14ed4645db4c972d.

TMH-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663724441624
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/cc00b0ecb22f7b435bbef88f14ed4645db4c972d

TMH-03 LACK OF INPUT VALIDATION

Category Severity Location Status

Inconsistency Minor TroveManagerHelpers.sol: 119~120 Resolved

Description

The input _troveManagerAddress does not have any input validation. Other input parameters are passed into the function

checkContract() which checks if the address is not the zero address and if the address contains code.

Multiple functions have the onlyTroveManager modifier which requires the caller to be a troveManager contract and these

functions will not be callable if the address is incorrectly set.

Recommendation

Consider adding checkContract(_troveManagerAddress) to prevent incorrectly setting troveManager as a zero address

or to an EOA.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved the finding in the commit ca4d9ec85e38429fa484d6bb40dc7ffc9770256a.

TMH-03 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663142202493
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/ca4d9ec85e38429fa484d6bb40dc7ffc9770256a

CKP-04 REDUNDANT CODE COMPONENTS

Category Severity Location Status

Volatile Code Informational BorrowerOperations.sol: 626, 747; StabilityPool.sol: 812 Resolved

Description

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test code or older

functionality.

Recommendation

We advise to remove the redundant statements for production environments.

Alleviation

[DeFi Franc]

The team heeded the advice and resolved the finding in the commit f74f1f5017dffcdfb502efb93c539f379406d8e7.

CKP-04 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238289
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/f74f1f5017dffcdfb502efb93c539f379406d8e7

CKP-05 MISSING ERROR MESSAGES

Category Severity Location Status

Coding

Style
Informational

AdminContract.sol: 41; DfrancParameters.sol: 77; MON/CommunityI

ssuance.sol: 84; MON/MONStaking.sol: 102; PriceFeed.sol: 40, 51
Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved the finding in the commit hash 3946dc9f1ac0b57b6da9ccb2ab552e1aca167069.

CKP-05 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238290
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/3946dc9f1ac0b57b6da9ccb2ab552e1aca167069

CKP-06 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

AdminContract.sol: 31, 64; BorrowerOperations.sol: 747; C

ollSurplusPool.sol: 122, 129, 133; DCHFToken.sol: 179; Dfr

ancParameters.sol: 76, 94, 98, 126; MON/CommunityIssua

nce.sol: 83, 88, 96, 116, 142, 228; MON/LockedMON.sol: 4

0, 48, 80, 98, 114, 140; MON/MONStaking.sol: 188, 192, 3

32; Migrations.sol: 17, 21; PriceFeed.sol: 50; SortedTroves.

sol: 526, 533; StabilityPool.sol: 784, 791; StabilityPoolMana

ger.sol: 32, 41, 58; TroveManager.sol: 48, 48, 1043, 1047,

1051; TroveManagerHelpers.sol: 80, 89, 98, 114, 114

Partially Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[DeFi Franc]

The team heeded the advice and partially resolved the finding in the commit hash

f74e188e42b3e71e51f25f10fafef276a92c6fd4.

CKP-06 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238291
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/f74e188e42b3e71e51f25f10fafef276a92c6fd4

CKP-07 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Informational MON/MONStaking.sol: 197; Proxy/ETHTransferScript.sol: 7 Resolved

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

197 treasury = _treasury;

_treasury is not zero-checked before being used.

7 (bool success,) = _recipient.call{ value: _amount }("");

_recipient is not zero-checked before being used.

Recommendation

Add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by adding the Zero address verification in the MONStaking contract,

and by deleting the ETHTransferScript contract, in the commit f74e188e42b3e71e51f25f10fafef276a92c6fd4.

CKP-07 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318045
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/f74e188e42b3e71e51f25f10fafef276a92c6fd4

TMH-04 REPETITIVE FUNCTION IMPLEMENTATION

Category Severity Location Status

Coding Style Informational TroveManagerHelpers.sol: 349~350, 373~374 Resolved

Description

The following functions in TroveManagerHelpers have different function names but have the same logic implemented.

Both the functions removeStake() and removeStakeTrove() call the internal function _removeStake() with the

only difference being the modifier.

Both the functions updateStakeAndTotalStakes() and updateStakeAndTotalStakesTrove() call the internal

function _updateStakeAndTotalStakes() with the only difference being the modifier.

The modifier for the functions removeStake and updateStakeAndTotalStakes is onlyBOorTM , while the modifier for the

functions removeStakeTrove and updateStakeAndTotalStakesTrove is onlyTroveManager .

Since the TroveManager contract can call the function with either modifier and the effect has no difference,

removeStakeTrove and updateStakeAndTotalStakesTrove can be removed.

Recommendation

Consider removing the functions removeStakeTrove() and updateStakeAndTotalStakesTrove() . Furthermore, change

any calls to the function removeStakeTrove() to the function removeStake() and calls to the function

updateStakeAndTotalStakesTrove() to updateStakeAndTotalStakes() . This will improve the maintainability and

readability of the code.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue in the commit 80c9ec708ee778e24e71d49daaf937692178727e.

TMH-04 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663143060230
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/80c9ec708ee778e24e71d49daaf937692178727e

OPTIMIZATIONS DEFI FRANC

ID Title Category Severity Status

GLOBAL-03
Unnecessary Use Of SafeMath And

SafeMathUpgradeable

Gas

Optimization
Optimization Acknowledged

BOC-01 Useless Statement Logical Issue Optimization Resolved

CKP-03
Improper Usage Of public And external

Type

Gas

Optimization
Optimization Resolved

DMD-01 Unnecessary Write To Memory
Gas

Optimization
Optimization Resolved

LMO-02 Costly Operation Inside Loop
Gas

Optimization
Optimization Resolved

MOT-02 State Variable Should Be Declared Constant
Gas

Optimization
Optimization Resolved

TMC-02 Unnecessary External Call
Gas

Optimization
Optimization Resolved

OPTIMIZATIONS DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318047
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663321672952
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238287
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663337643883
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318064
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318069
https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1662536915943

GLOBAL-03 UNNECESSARY USE OF SAFEMATH AND
SAFEMATHUPGRADEABLE

Category Severity Location Status

Gas Optimization Optimization Acknowledged

Description

The SafeMath and SafeMathUpgradeable library is used unnecessarily throughout the codebase. With Solidity compiler

versions 0.8.0 or newer, arithmetic operations will automatically revert in case of integer overflow or underflow.

Recommendation

We advise removing the usage of SafeMath and SafeMathUpgradeable library and using the built-in arithmetic operations

provided by the Solidity programming language for gas optimization and code clarity.

Alleviation

[DeFi Franc]

The team acknowledged the finding and decided to keep the codebase unchanged.

GLOBAL-03 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318047

BOC-01 USELESS STATEMENT

Category Severity Location Status

Logical Issue Optimization BorrowerOperations.sol: 191 Resolved

Description

In the openTrove() function of the BorrowerOperations contract, a line is present while performing no action.

191 vars.DCHFFee;

Recommendation

It is recommended to remove this line if it is not necessary.

Alleviation

[DeFi Franc]

The team heeded the advice and resolved the finding in the commit hash fe05bb58171d5e4195c82ec4ed82ca6beb5392e4.

BOC-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663321672952
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/fe05bb58171d5e4195c82ec4ed82ca6beb5392e4

CKP-03 IMPROPER USAGE OF public AND external TYPE

Category Severity Location Status

Gas

Optimization
Optimization

DCHFToken.sol: 106, 111; Dependencies/ERC20Permit.sol: 82;

DfrancParameters.sol: 126; MON/LockedMON.sol: 40, 80, 98, 11

4; MON/MONStaking.sol: 196; Migrations.sol: 17, 21; TroveMana

gerHelpers.sol: 782

Resolved

Description

public functions that are never called by the contract could be declared as external . external functions are more

efficient than public functions.

Recommendation

Consider using the external attribute for public functions that are never called within the contract.

Alleviation

[DeFi Franc]

The team heeded the advice and resolved the finding in the commit hash f8f67806778ac36578d9fea42abc0fbb881694a8.

CKP-03 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227238287
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/f8f67806778ac36578d9fea42abc0fbb881694a8

DMD-01 UNNECESSARY WRITE TO MEMORY

Category Severity Location Status

Gas Optimization Optimization Dependencies/DfrancMath.sol: 113~114 Resolved

Description

The collateral ratio is first stored in a memory variable newCollRatio . Since the variable is not used and the function name

conveys what the value returned is, the calculation can be returned directly. This will save the gas consumed from writing

and reading to memory.

Recommendation

Consider removing line 111 and changing line 113 to:

113 return _coll.mul(_price).div(_debt);

Alleviation

[DeFi Franc]

The team heeded the advice and resolved the finding in the commit hash 8865e45b98fd6f54e3890e60b1361d73668b1dba.

DMD-01 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663337643883
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/8865e45b98fd6f54e3890e60b1361d73668b1dba

LMO-02 COSTLY OPERATION INSIDE LOOP

Category Severity Location Status

Gas Optimization Optimization MON/LockedMON.sol: 64 Resolved

Description

Accessing storage variables in a loop can be costly in terms of gas consumption.

64 assignedMONTokens += _totalSupply;

Recommendation

We recommend using a local variable to hold the intermediate result.

Alleviation

[DeFi Franc]

The team heeded the advice and resolved the finding in the commit hash 3ec2be6920b68412bf7b22c8174f58462a959483.

LMO-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318064
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/3ec2be6920b68412bf7b22c8174f58462a959483

MOT-02 STATE VARIABLE SHOULD BE DECLARED CONSTANT

Category Severity Location Status

Gas Optimization Optimization MON/MONToken.sol: 12 Resolved

Description

State variables that never change should be declared as constant to save gas.

12 uint256 internal _1_MILLION = 1e24; // 1e6 * 1e18 = 1e24

_1_MILLION should be declared constant .

Recommendation

We recommend adding the constant attribute to state variables that never change.

Alleviation

[DeFi Franc] :

The team heeded the advice and resolved this issue by putting the variable as constant, in the commit

c5463c14597b0bccf22dc49ced8fb00c2c9aafd6.

MOT-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1663227318069
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/c5463c14597b0bccf22dc49ced8fb00c2c9aafd6

TMC-02 UNNECESSARY EXTERNAL CALL

Category Severity Location Status

Gas Optimization Optimization TroveManager.sol: 648~649 Resolved

Description

The function troveManagerHelpers.checkRecoveryMode() will make an external call to the contract

troveManagerHelpers and ultimately invoke the internal function _checkRecoveryMode . However, _checkRecoveryMode

is implemented in DfrancBase.sol , which is also a base contract for the contract troveManager . Since

_checkRecoveryMode can be called internally, the external call to troveManagerHelpers is unnecessary.

Recommendation

Consider changing the code on line 648 to the following:

648 vars.recoveryModeAtStart = _checkRecoveryMode(_asset, vars.price);

Using internal calls will reduce gas costs compared to making external calls.

Alleviation

[DeFi Franc]

The team heeded the advice and resolved the finding in the commit hash f4e31a2e04150257f1a87a78d106a0ce10b957e4.

TMC-02 DEFI FRANC

https://acc.audit.certikpowered.info/project/2b61d990-d14e-11ec-8b87-63673764a2a7/report?fid=1662536915943
https://bitbucket.org/grizzlyfi/dchf-contracts/commits/f4e31a2e04150257f1a87a78d106a0ce10b957e4

APPENDIX DEFI FRANC

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical

Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX DEFI FRANC

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER DEFI FRANC

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER DEFI FRANC

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

DeFi Franc Security Assessment CertiK Verified on Sept 25th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

